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Abstract
Excess charge carriers on semiconducting nanotubes immersed in sluggish
polar environments can undergo self-localization into polaronic states. Using a
simplified model of electrons and holes of equal effective masses and confined
to a cylindrical surface in the three-dimensional polar medium, we evaluate the
binding energy Epol

b of adiabatic Fröhlich–Pekar polarons and compare it to the

corresponding exciton binding energy Eexc
b . The ratio Epol

b /Eexc
b is found to be a

non-monotonic function of the cylinder radius R which, in an idealized model,
can reach values of about 0.35, substantially larger than values of about 0.2 for
two-dimensional (2D) or three-dimensional (3D) systems. We argue that these
findings represent a more general crossover effect that could manifest itself in
other semiconductor nanostructures in 3D polar environments. As a result of the
strong polaronic effect, the activation energy of exciton dissociation into polaron
pairs is significantly reduced, which may lead to enhanced charge separation.

1. Introduction

Low-dimensional semiconductor structures such as quantum wells, quantum wires, nanotubes
and conjugated polymers are important for practical applications and interesting scientifically.
It is known that the confinement of the motion of charge carriers in some directions leads
to increased effects of the Coulomb interaction on system excitations. In this paper we are
concerned with two types of such effects: excitonic and polaronic. The excitonic effect
refers to the formation of Coulombically bound electron–hole pairs, Wannier–Mott excitons,
which progressively affect optical properties of semiconductors: the exciton binding energy
Eexc

b increases from its 3D value to 2D and, further on, to quasi-one-dimensional (1D)
magnitudes (Eexc

b diverges in pure 1D) [1]. The polaronic effect occurs in polar media,
where the Coulomb field of an individual charge carrier causes the polarization (deformation)
of its surroundings, resulting in the carrier self-localization into polaronic states. Such
polarons have been extensively studied especially in the context of 3D ionic crystals and polar
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semiconductors [2–5]. The polaronic effect also grows with the confinement: the polaron
binding energy Epol

b in 2D is larger than in 3D and would diverge in pure 1D [6, 7]. Multiple
aspects of the excitonic and polaronic effects have been explored in many publications for
various specific low-dimensional systems.

Of particular interest to us is a relationship between Eexc
b and Epol

b , each of the binding
energies understood as being measured from the band edges in the absence of the polaronic
effect. The ratio Epol

b /Eexc
b of the binding energies has a clear significance for the relative

energetics of closely bound and well-separated electron–hole pairs that is expected to affect
practically important processes of charge separation and recombination. The bare value Eexc

b
signifies the ionization energy, whether thermal or photo, required for ‘unbinding’ of the
exciton into a well-separated band-edge electron and hole. In the presence of the polaronic
effect, however, the thermal ionization (dissociation) would occur into a distant electron–
polaron and hole–polaron so that the exciton thermal ionization energy is reduced from Eexc

b

to Eexc
b − 2Epol

b . We are interested in how much of this relative reduction might be possible
to achieve due to the formation of strong-coupling (adiabatic) polarons. Our discussion here
is restricted to systems with equal electron and hole effective masses, me = mh = m, so
that the electron–polaron and hole–polaron have the same binding energies while the closely
bound exciton is neutral both globally and locally and therefore does not polarize the sluggish
component of the medium in the adiabatic approximation [8, 9].

It is instructive to look at the ratio Epol
b /Eexc

b based on the results known for isotropic
systems of ‘well-defined’ dimensionality, that is, for purely 3D, 2D and 1D systems. One
would then find that, while each of the binding energies increases with more confinement, their
growth occurs nearly ‘in proportion’ so that the ratio does not change significantly. Indeed, the
classic Pekar’s result [10] for 3D adiabatic polarons would translate into the maximum ratio of
about 0.22. The exciton binding in 2D increases by a factor of four from its 3D value [1] but
the polaron binding energy in 2D increases by almost as much [6], resulting in the ratio �0.20.
Moreover, if the divergent purely 1D binding energies are taken (parametrically) for their ratio,
then the result of [7] would translate into a maximum Epol

b /Eexc
b of approximately 0.17.

From the standpoint of this data, the results of our recent model quasi-1D calculations [11]
for polarons and excitons on nanotubes immersed in a 3D polar medium, yielding Epol

b /Eexc
b in

excess of 0.3, appear quite surprising. In the particular case of the tubular geometry, charge
carriers are confined to motion on a cylindrical surface. Our study [11] was restricted to
relatively small cylinder radii R. In this paper we will use a direct variational approach to
calculate adiabatic polarons for arbitrary R, thereby enabling an assessment of the evolution of
the ratio Epol

b /Eexc
b between the purely 2D (R → ∞) and quasi-1D regimes. The corresponding

calculations for excitons on a cylindrical surface have been performed recently [12, 13] and are
very much in line with our exciton data. We will demonstrate explicitly (see figure 2(b)) that
the ratio of the polaron and exciton binding energies exhibits non-monotonic behaviour as a
function of the cylinder radius and can achieve values as large as about 0.35 at intermediate
R, where the cylinder circumference is roughly comparable to an appropriate Bohr radius.
We believe that our demonstration of Epol

b /Eexc
b ratios above the values in purely 3D and 2D

systems can be rationalized by invoking simple physical arguments. These arguments also
suggest that the relative increase in the polaronic effect that is found may reflect a general
behaviour that might be characterized as a crossover effect.

Consider a gradual increase in the confinement, e.g. by starting to decrease the radius of
a very large cylinder in going from the purely 2D system towards quasi-1D or by starting to
decrease the thickness of a very thick quantum well in going from the purely 3D system towards
2D. Stated simplistically, the spatial size (extent) of a still unconfined polaron wavefunction
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is larger than that of an unconfined exciton. As the confinement increases, therefore, the
polaron can start experiencing substantial growth in its binding energy due to the confinement
before a ‘proportionally’ substantial growth of the exciton binding energy sets in. With yet
further increase in confinement, both polaron and exciton binding energies will reflect fuller
confinement effects, resulting in the corresponding trend of the decreasing ratio Epol

b /Eexc
b .

Of course, quantitative aspects of the evolution can vary for different systems and need to be
evaluated accordingly. We also stress that the above consideration tacitly assumed the existence
of a uniform 3D polarizable medium, with the confinement affecting only the motion of charge
carriers. Strong violations of this assumption can significantly affect the outcome for the ratio
of binding energies.

While serving as a suggestive illustration of possibly general behaviour, it is polarons and
the relationship of polarons and excitons on a cylindrical surface that are the subjects of our
direct interest in this paper. Organic and inorganic tubular (nano)structures (see, e.g., [14, 15])
attract a great deal of attention and are considered to be candidate systems for important
applications like (photo)electrochemical energy conversion and the (photo)catalytic production
and storage of hydrogen, as well as in optoelectronics. On the one hand, their extended
size along the tube axis can facilitate very good electron transport in that direction. On the
other hand, tubes can expose large areas of both exterior and interior surfaces to facilitate
surface-dependent reactions. Many of these applications involve contact with polar liquid
environments such as common aqueous and non-aqueous solvents and electrolytic solutions
which can provide conditions appropriate for the strong polaronic effect [11], thereby changing
the nature of charge carriers. A widely known example of the tubular geometry is single-walled
carbon nanotubes (SWCNTs) and, in fact, redox chemistry of carbon nanotubes is an ‘emerging
field of nanoscience’ [16]. We note that the importance of the excitonic effects in the optics of
semiconducting SWCNTs is well established now, with binding energies Eexc

b experimentally
measured in some SWCNTs to be in the range of 0.4–0.6 eV [17–19]. There is also growing
evidence of environmental effects on the electronic properties of SWCNTs [20–22].

It can be anticipated that the polaronic effect that we discuss would have an influence on
both charge-transfer reactions and charge carrier dynamics on the tubes. In the context of our
discussion of the relative energetics, a substantial reduction in the activation energy due to the
polaronic effect should be expected for electric-field-assisted exciton dissociation and charge
separation on semiconducting nanotubes.

Our illustrative calculations of the polaronic effect in this paper do not take into account
details of the electronic band structure and polarizability of different nanotubes but, instead, are
restricted to a simplest model of electrons and holes confined to a cylindrical surface in the 3D
dielectric medium. The assumption of equal electron and hole effective masses is a reasonable
approximation, e.g. for SWCNTs as well as for boron nitride tubes [23].

2. Exciton and polaron energy functionals

As noted above, our basic model, following references [12] and [13], assumes that electron and
hole are particles of the same effective mass m whose motion is restricted to the surface of the
cylinder of radius R. The cylindrical surface itself is immersed in the uniform 3D dielectric
continuum characterized, as is common in studies of the polaron [2–4] and solvation [24–26]
effects, by two magnitudes of the dielectric permittivity: the high-frequency (optical) value
of ε∞ and the low-frequency (static) value of εs. In the case of liquid polar media, the slow
component of the polarization is ordinarily associated with the orientational polarization of the
solvent dipoles, and it is typical [25, 11] that εs � ε∞. The fast component of the polarization
follows charge carriers instantaneously. The slow component of the polarization, on the other
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hand, is considered to be static in the adiabatic picture to determine the electronic states; the
slow component then responds to the averaged electronic charge distribution.

With me = mh, there is no net charge density associated with the ground state of the
neutral exciton that would cause a static polarization of the slow component (‘non-polarizing
exciton’). The Coulomb interaction between the electron and the hole in the exciton is screened
only by the high-frequency dielectric response ε∞ [8, 9, 27]. The total energy of the exciton as
a function of the normalized wavefunction ψ(r) of the electron–hole relative motion (reduced
mass m/2) is then

Eexc{ψ} = K exc − U exc

= h̄2

m

∫
dr |∇ψ(r)|2 − e2

ε∞

∫
dr

|ψ(r)|2

D(r)
, (1)

whose global minimum determines the exciton ground-state wavefunction and its binding
energy. For our geometry, position vector r = (x, y) is confined to the cylindrical surface,
where we choose x to be along the cylinder axis and −πR < y < πR to be along
the circumferential direction; |∇ψ(r)|2 = (∂ψ/∂x)2 + (∂ψ/∂y)2. Coulomb interaction
is determined by the physical distance in the 3D space; in the flat geometry it would be
D(r) = |r|, for the points on the cylindrical surface

D(r) =
(

x2 + 4R2 sin2 y

2R

)1/2
. (2)

Optimization of the functional (1) for the ground state of the exciton on a cylinder has been
performed in [12] and [13], with the results being in very good agreement with our data to be
used in the comparison with the polaron.

The polarons that we discuss here are of the large-radius Fröhlich–Pekar type, where the
Coulomb field of an individual charge carrier supports a self-consistent dielectric polarization
pattern surrounding the carrier. The formation of large-radius polarons (self-localization,
self-trapping) occurs due to the interaction of charge carriers with the ‘slow’ component of
polarization. As the fast component of polarization does not contribute to the polaronic effect,
it is the effective dielectric constant ε∗:

1/ε∗ = 1/ε∞ − 1/εs, (3)

which affects the coupling strength [2–4, 24–26]. In the adiabatic approximation, the
normalized wavefunctions ψ(r) of a self-localized charge carrier correspond to the minima
of the following polaron energy functional:

Epol{ψ} = K pol − U pol

= h̄2

2m

∫
dr |∇ψ(r)|2 − e2

2ε∗

∫
dr1 dr2

|ψ(r1)|2 |ψ(r2)|2
D(r1 − r2)

, (4)

whose global minimum we will be seeking for the ground state of the polaron. The
functional (4) has the form that is well known for the large strong-coupling polarons [5, 9]
and is a result of the optimization of the total adiabatic energy functional with respect
to the polarization of the medium, thereby exhibiting an effective self-interaction of the
electron [4, 9, 11]. Correspondingly, the U pol term in equation (4) is known to be ‘made of’
two parts: −U pol = −U pol

el +U pol
d , where U pol

el represents the magnitude of the potential energy

of the electron in the polarization field and U pol
d represents the energy required to create this

polarization (‘deformation energy’); with the optimal polarization, U pol
d = U pol

el /2.
Both energy functionals (1) and (4) assume that the electron and hole energies are

measured from the band edges.
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It is convenient to factor out dependences on physically relevant combinations of
parameters by introducing appropriate units of energy and length. We will choose such units
based on combinations for the exciton Bohr radius and binding energy (effective Rydberg) in
3D:

a0 = 2εh̄2/me2, Ryd = e2/2εa0. (5)

For the exciton problem, equation (1), one uses ε = ε∞ in equation (5), and for the
polaron problem, equation (4), one uses ε = ε∗. We use superscript indices ‘exc’ and
‘pol’ to distinguish between the corresponding units (5). With all the coordinates (x , y for
the cylinder) measured in appropriate a0, one arrives at dimensionless energy functionals,
Eexc

0 = Eexc/Rydexc and Epol
0 = Epol/Rydpol, where

Eexc
0 {ψ} =

∫
dr |∇ψ(r)|2 − 2

∫
dr

|ψ(r)|2

D0(r)
(6)

and

Epol
0 {ψ} = 1

2

∫
dr |∇ψ(r)|2 −

∫
dr1 dr2

|ψ(r1)|2 |ψ(r2)|2
D0(r1 − r2)

. (7)

The dimensionless D0(r) in equations (6) and (7) features the same behaviour as equation (2)
but with R replaced by the corresponding R0 = R/a0.

The global minima of equations (6) and (7), −Eexc
0 and −Epol

0 respectively, would
determine the dimensionless binding energies. As the units (5) already establish the scaling
rules, in what follows we will be comparing Eexc

0 and Epol
0 at the same values of R0. The ratio

Epol
0 /Eexc

0 would have a direct physical meaning of the maximum achievable when εs � ε∞
and ε∗ � ε∞ in equation (3). As we mentioned earlier, this can be a typical situation for many
polar solvents.

Before proceeding with the analysis for a cylindrical surface, we recall in more detail the
benchmarks known for isotropic d-dimensional systems (D0(r) = |r| = r ) briefly described in
the introduction. The exact isotropic excitonic ground state ψ(r) corresponding to equation (6)
is given by the solution of the Schrödinger equation,

−Eexc
0 ψ = −∂

2ψ

∂r 2
− (d − 1)

r

∂ψ

∂r
− 2

r
ψ,

yielding well-known

ψ(r) ∝ exp

(
− 2r

d − 1

)
, Eexc

0 = 4

(d − 1)2
. (8)

With our choice of units, Eexc
0 = 1 in 3D.

The polaronic ground-sate wavefunctions and energies corresponding to equation (7) are
known from variational calculations for d-dimensional systems. It is customary in the polaronic

literature to express energies in terms of the coupling constant αc = (
me4/2ε∗2h̄3ω

)1/2
and

phonon frequency ω. Note that the combination α2
c h̄ω appearing in the results for strong-

coupling (adiabatic) polarons corresponds to 2Rydpol, as defined in equation (5). Thus the
well-known Pekar’s result [10] for the 3D polaron translates into Epol

0 � 0.218 and into the

same magnitude of the ratio Epol
0 /Eexc

0 in 3D.

The 2D polaron has been studied in great detail in [6], with the best result of Epol
0 � 0.809

for the adiabatic case being achieved with Pekar-type trial wavefunctions. Since Eexc
0 = 4

in 2D, the ratio Epol
0 /Eexc

0 � 0.202, which is only slightly smaller than in 3D. The 2D case
represents the limit R → ∞ for a cylindrical surface and is particularly important for our
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Figure 1. The spatial distribution of unnormalized density |ψ(r)|2 for the exciton (dashed line) and
the polaron (solid line) in 2D. The polaron wavefunction is as per equation (9). The inset shows the
corresponding spatial distribution U(r) of the potential energy in U = ∫

U(r) dr .

0
0 2

2

1

1 3

0

5

10

15

20

E0
pol

excE0

1 / R 0

(a)

0 10 2 0 30 40 0 10 20 30 4 0

0.2

0.0

0.4 10

0

5

ex
c

E
0

E
0po

l / E
0po

l
ex

c
E

0
- 2

(b)

1 / R 0

Figure 2. (a) The dimensionless exciton and polaron binding energies as functions of the
dimensionless inverse cylinder radius 1/R0. The inset shows the behaviour of the polaron binding
energy in more detail at small 1/R0. (b) The ratio of the binding energies Epol

0 /Eexc
0 of the

excitations on a cylinder is shown as a thick solid line. A thin solid line displays this ratio as
is obtained in the quasi-1D calculation with the effective tube potential (15). A thin short-dash
line shows the quasi-1D result for this ratio if the effective interaction, instead, was that of a
quantum wire, equation (16). A thick long-dash line displays the dimensionless activation energy
Eexc

0 − 2Epol
0 .

analysis. We have looked at simpler one-parametric trial wavefunctions that would make a
good representation of the 2D adiabatic polaron and found that the wavefunction

ψ(r) ∝ 1

cosh (αr)
(9)

with α � 1.674 yields a very good optimization for the energy: Epol
0 � 0.804, which is

quite accurate for our purposes. Figure 1 compares the spatial structure of the 2D exciton and
polaron.

As both exciton and polaron binding energies diverge in pure 1D, the following comparison
might be of a dubious nature but is still interesting. Specifically, reference [7] discussed the
calculation of the 1D polaron in terms of the renormalized coupling constant α ′

c = αc/(d − 1),
where d → 1. The best variational result achieved for the adiabatic polaron was Epol

b �
6
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0.333 (α ′2
c h̄ω). As the diverging d-dependence in this expression is the same (d − 1)−2 as

in the exciton case (8), the ratio of the binding energies in 1D could then be interpreted as
Epol

0 /Eexc
0 � 0.167.

3. Variational analysis for a cylinder

When on a cylindrical surface, both exciton and polaron ground states need to be determined
numerically. Our variational analysis of the energy functionals (6) and (7) has been performed
on the following classes of the trial wavefunctions3. For the exciton problem we have used
three-parametric (α, β and γ ) wavefunctions

ψ(x, y) ∝ exp
[
−(
α2x2 + β2 y2

1 + γ 2
)1/2

]
. (10)

The polaron problem is much more demanding on computation time, so we chose two-
parametric (α and β) wavefunctions

ψ(x, y) ∝ 1

cosh
(
α2x2 + β2 y2

1

)1/2
. (11)

The functional dependences in equations (10) and (11) are such that they can recover, in the
limit of R0 → ∞, wavefunctions (8) and (9) found for the 2D systems—similarly to the earlier
exciton calculations [12, 13].

We explored two choices for the effective coordinate y1 in equations (10) and (11): ‘arc-
based’ (as in [13])

y1 = y, (12)

−πR0 < y < πR0, and ‘chord-based’ (as in [12])

y1 = 2R0 sin (y/2R0) . (13)

Both choices can be thought of as, respectively, n � 1 and n = 1 limits of more general

y1 = πR0

{
2

π
sin

[
π

2

(
y

πR0

)n ]}1/n

which could be used in future refinements as being more flexible in terms of the shape of the
wavefunction being periodic in the circumferential direction. In this paper we resorted to just
choosing the best results among those obtained with equations (12) and (13).

Wavefunctions (10) and (11) feature two parameters α and β having the meaning of
inverse lengths, thereby explicitly allowing for anisotropy of the wavefunction extent in the
axial and circumferential directions [13]. What we will later be referring to as quasi-1D results
corresponds to β = 0 when the wavefunctions are uniform around the cylinder circumference.

The main quantitative results of this paper are displayed in figure 2, showing the optimized
variational outputs for the exciton and polaron binding energies as well as their ratio Epol

0 /Eexc
0 .

Our exciton data is very close to the results of [12] and [13], where the reader can find extensive
discussions.

Just as in the exciton case, the polaron binding energy exhibits very little change from its
2D value (�0.8) due to the curvature of up to R0 ∼ 1 (see the inset in figure 2(a)) where it
starts rising, relatively earlier and more rapidly than the exciton dependence. This immediately
translates into a substantial increase in the ratio Epol

0 /Eexc
0 with decreasing R0, as shown in

figure 2(b). The maximum of the ratio �0.35 is achieved in the region of 1/R0 ∼ 10, after

3 All numerical integrations and optimizations have been performed by using IMSL numerical libraries, as provided
with the PV-WAVE Advantage package, http://www.vni.com.
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ε0

pol

α

β

(b)

ε0

pol

Figure 3. The behaviour of the functional (7) at R0 = 0.65 with the trial wavefunctions (11) as a
function of the variational parameters α and β for two choices of the effective coordinate y1: (a) as
in equation (12) and (b) as in equation (13).

which the ratio starts slowly decreasing with 1/R0. While, of course, larger ratios Epol
0 /Eexc

0

lead to larger relative reductions in the effective activation energy Eexc
0 − 2Epol

0 , it is quite
interesting that the absolute value of this activation energy, also shown in figure 2(b), exhibits
a non-monotonic dependence on 1/R0. A region around the minimum of this curve indicates
specific tube sizes where the activation energy would be at its lowest.

Our variational results have shown that the the dependence of Epol
0 on 1/R0 collapses onto

the corresponding quasi-1D curve practically right away after the onset of a substantial rise in
binding. This is different from the exciton case, where deviations from the quasi-1D behaviour
persist all the way into the region of 1/R0 > 20. In other words, the polaron spreads uniformly
around the cylinder at much smaller curvatures than the exciton does. We note that the quasi-1D
variational results for the polaron binding using trial wavefunctions (11) and (10) differ very
little and are in good agreement with our analysis in [11], where no assumptions have been
made about the wavefunction shape and the nonlinear optimizing equation has been solved
numerically. The thin solid line in figure 2(b) shows the ratio Epol

0 /Eexc
0 using quasi-1D results

for the binding energies, and its deviation from the variational result for a cylinder is entirely
due to underestimation of the exciton binding.

As with all variational calculations, we, of course, cannot exclude that some details in
the results shown in figure 2 may undergo slight modifications upon further improvements of
variational wavefunctions. Importantly, possible improvements would be inconsequential for
our main observations of a non-monotonic dependence of the ratio Epol

0 /Eexc
0 on 1/R0 and of

the magnitude of the ratio reaching values well above the 2D value of �0.2. We found that a
rise in the ratio above 0.3 is obtainable even if the polaron wavefunctions are not specifically
optimized for a range of given R0 but the 2D optimal values of α = β � 1.67 are used. For very
small tubes with 1/R0 < 20, the results of exact numerical calculations in [11] complement
the picture.

The transitional region of R0 ∼ 1 is likely to be especially sensitive to the choice of
trial wavefunctions. So, reference [12] reported an improvement of a few percent for the
exciton binding energy in the region of 1 < 1/R0 < 2.5 with certain trial functions. Similar
improvements could perhaps be found for the polaron binding energies. Figure 3 illustrates
the behaviour of the polaron functional (7) in the transitional region, at R0 = 0.65, as a
function of the variational parameters α and β . A curious feature of the ‘landscape’ in
figure 3(a) is a clear coexistence of two minima, one corresponding to a polaronic state that

8
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is uniformly distributed (delocalized) around the cylinder circumference, and the other where
the circumferential distribution is non-uniform. While this appears as an interesting possibility,
it could also be an artefact of a restricted nature of a specific class of the trial wavefunctions;
compare visually, for example, to the landscape of figure 3(b). A much more careful study
would be needed to explore the possibility of coexisting polaronic states requiring an analysis of
actual adiabatic potential surfaces. An example of an analogous analysis can be found in [28],
where we proved a coexistence of different polarons in certain quasi-1D systems.

4. Discussion

Both in this paper and in [11] we have shown that the strong polaronic effect occurring in
sluggish polar environments substantially affects the relative energetics of closely bound and
well-separated electron–hole pairs on a cylindrical surface of nanotubes. The binding energy
Epol

b of an individual polaron can, in an idealized model, reach as much as about 0.35 of the
binding energy Eexc

b of the exciton. This would translate into a reduction in the activation energy

Eexc
b −2Epol

b for exciton dissociation by a factor of about three from the value Eexc
b that it would

have in a non-polar environment with the same value of the high-frequency dielectric constant
ε∞. Note that, in our earlier study [11], we have not found any additional energy barriers
between the exciton and distant polaron-pair states. One should expect that enhanced separation
of charges and a corresponding luminescence quenching would then result, for example, in
experiments probing the effects of electric field on the luminescence. It is needless to say that
additional factors omitted in our simplified analysis here can make the reduction magnitude
smaller (see, e.g., a comparison in [11] of cases with different ‘electrostatic conditions’).

Polar liquid environments such as many common solvents may be good candidates for
providing conditions necessary for the strong polaronic effect, as they can exhibit both high
values of the static dielectric constant εs and a relatively slow response of the orientational
polarization (longitudinal relaxation times can be on the order of 1 ps and longer) [25, 11].
Quite fittingly, there is an ongoing intense research effort on various applications of nanotubes
in contact with such environments, and we hope that direct experimental verifications of
our qualitative conclusions will be possible. We note that a comprehensive mapping of
luminescence versus absorption spectra of individual SWCNTs was in fact achieved in aqueous
suspensions [29, 30]. Interestingly, numerical estimates in [13] indicate that the dimensionless
radius R0 for a range of SWCNTs may be close to 0.1, which corresponds to the region of
maximum Epol

0 /Eexc
0 ratios in figure 2(b).

We have demonstrated that the ratio of the binding energies Epol
b /Eexc

b has a non-monotonic
dependence on the cylinder curvature 1/R. As argued in the introduction, our particular
observation for the cylindrical geometry can be a manifestation of a more general crossover
effect that would be common for other structures in 3D polar media when the increasing
confinement of the electron motion causes a ‘transition’ between d-dimensional systems, such
as between 3D and 2D (quantum wells) or between 3D and 1D (quantum wires). Basically, the
origin of this effect can be related to the fact that the spatial extent of an unconfined polaron is
larger than the size of an unconfined exciton (see figure 1 for the 2D case), thereby making the
polaron ‘respond’ to the initially increasing confinement in a more pronounced way than the
exciton. Only after the exciton experiences a fuller effect of the confinement, the ratio of the
binding energies starts decreasing. Elaborating more on this idea, the inset in figure 1 shows
the spatial distribution of the potential energy terms U : E = K −U , for unconfined excitations.
It is evident that the ‘longer-range’ contributions to the polaron potential energy are relatively
more important than for the exciton. This is why the effect of increasing confinement on the
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Figure 4. Distance dependence of the effective 1D Coulomb potentials for charges on a cylinder,
equation (15), solid line, and in a quantum wire, equation (16), long-dash line, in comparison with
the original Coulomb interaction (14), short-dash line.

polaron is initially stronger. In the particular case of the cylindrical geometry, the curvature
changes remote physical distances (chords instead of arcs, equation (2)) more than it does close
distances.

A meaningful parallel can be drawn with the behaviour of the ratio U/K of the potential
and kinetic energy terms in confined systems. The virial theorem for the Coulombically bound
states in unconfined d-dimensional systems states that U/K = 2, independent of d , which,
of course, also follows directly from scaling of both functionals (1) and (4) provided that
D(r) = |r| = r . In particular, polarons in such systems are known [31, 9, 4] to satisfy the
following ratios for various energy terms: Epol

b :K pol:U pol:U pol
el :U pol

d = 1:1:2:4:2. Some of
these relationships are violated in confined systems. As studied in [32], the virial theorem ratio
U exc/K exc for excitons in quantum wells and quantum wires is larger than 2 and, in fact, a non-
monotonic dependence of U exc/K exc has been demonstrated for quantum wells transitioning
between 3D and 2D limits. We have found a non-monotonic behaviour of the ratio U/K for
both polarons and excitons on a cylinder as a function of the curvature 1/R. In agreement with
our qualitative arguments, at smaller 1/R this ratio grows much more quickly for the polaron
than for the exciton. At large curvatures, however, the trend is reversed and the exciton has
larger ratios U/K than the polaron.

It is useful to continue a qualitative reasoning by discussing the quasi-1D limit of our
results, that is, the case of stronger but still finite degrees of confinement. One can then use the
notion of the effective Coulomb potentials [1, 32], here as a function of the 1D (axial) distance
x . (The effective Coulomb potentials for 2D can be similarly introduced [32]). Figure 4
compares three potentials in units such that, at very large distances, the potentials behave as

Veff(x) = R0/x . (14)

In this limit the electron wavefunction on a cylinder is delocalized around its circumference
and the effective interaction becomes that of rings of charge given by

Veff(x) = 2

π
[
(x/R0)2 + 4

]1/2
K

[
4

(x/R0)2 + 4

]
, (15)

where K (m) = ∫ π/2
0 (1 − m sin2 θ)−1/2 dθ is a complete elliptic integral of the first kind. If,

instead of a tube, we dealt with a quantum wire, the electron wavefunction would be delocalized
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throughout the cross-section of the wire, with the effective interaction approximated as [1]

Veff(x) = 1

(x/R0)+ 0.3
. (16)

Both effective tube (15) and wire (16) 1D potentials feature modifications of the shorter-
range interaction from the original Coulomb (14) due to the transverse spread of wavefunctions,
thereby eliminating a pure 1D divergence of the ground states for excitons and polarons. As we
discussed above, the role of the longer-distance interactions is more important for the polaron
than for the exciton. Since the relative modification of the original Coulomb to the effective
potentials is increasing towards shorter distances, it is then clear that the ratio Epol

b /Eexc
b in

systems with modified interactions should be larger than values of about 0.2 in systems with
pure Coulomb interaction. Moreover, following the same logic, one should expect that the
larger modification is from the original Coulomb distance dependence, the larger will be the
Epol

b /Eexc
b ratios. Figure 4 shows that deviations from the Coulomb dependence for the effective

wire potential are smaller than for the tube potential (over a relevant spatial range). We have
performed a quasi-1D variational optimization of the polaron and exciton binding energies with
the wire potential (16). The resulting ratios, Epol

0 /Eexc
0 , are shown in figure 2(b) with a short-

dash thin line and are, indeed, smaller than the ratios calculated with the tube potential (15)—
solid thin line in that figure.

These qualitative arguments, while confirmed by specific model calculations, do not appear
to be restricted to this specific situation. We therefore expect that findings of larger magnitudes
of the ratio Epol

b /Eexc
b and of a non-monotonic dependence of this ratio on the degree of

confinement represent a crossover effect that can be common to semiconductor nanostructures
in 3D polar environments. Further calculations with different geometric structures are needed
to validate this conjecture and evaluate its quantitative aspects, including in non-uniform polar
environments.

We would like to reiterate that numerical data that we arrived at in this paper are based
on a simplified model; more accurate calculations would have to take into account specific
aspects of the nanotube band structure and the tube’s own polarizability. Optical studies of
SWCNTs particularly indicate the dependence of the exciton binding not only on R but also
on the chirality of the tubes; see the discussion and multiple citations in [33]. The latter
reference also shows separately the effect on excitons of tube’s polarizability; our earlier quasi-
1D calculations are consistent with their findings, and we refer the reader to [11] for illustrations
of this effect on polarons.

Another interesting subject for future research is an assessment of the activation energy
for exciton dissociation in confined semiconductors with unequal electron and hole masses,
me �= mh. In this case, electron–polarons and hole–polarons have different binding energies
and, in addition, the exciton itself can cause an adiabatic polarization of the environment [8, 27].
The corresponding ‘polaronic’ corrections to the exciton binding in quantum-well wires have
been studied, for example, in [34]. From a general standpoint, one would also like to extend
the analysis of the effects of polar media on the dissociation of confined excitons to the
intermediate-coupling [2–4] regime.
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